SnapShot: Spliceosome Dynamics II
نویسندگان
چکیده
Numerous mechanisms exploit or modulate the conformational/compositional dynamics of spliceosomes to regulate splicing. The majority of higher eukaryotic protein-coding genes contain more than one intron and the derived pre-mRNAs can be alternatively spliced. Diverse principles ensure the reliable identification of authentic splice sites while concomitantly providing flexibility in splice site choice during alternative splicing. Some species contain a second type of minor (U12-type) spliceosome.
منابع مشابه
SnapShot: Spliceosome Dynamics III
The complex compositional and conformational dynamics of spliceosomes required for regulated splicing are prone to malfunction when mutations affect splicing factors or cis-acting regulatory sequences. Indeed, many such mutations have been linked to heritable diseases or malignancies in humans. Small molecule modulators and antisense oligonucleotides or analogs harbor great potential for therap...
متن کاملSnapShot: Spliceosome Dynamics I
Spliceosomes are multi-megadalton RNA-protein molecular machines that carry out pre-mRNA splicing, that is, the removal of non-coding intervening sequences (introns) from eukaryotic pre-mRNAs and the ligation of neighboring coding regions (exons) to produce mature mRNA for protein biosynthesis on the ribosome. They are the prototypes of dynamic molecular machines, assembling de novo for each sp...
متن کاملSpliceosome Database: a tool for tracking components of the spliceosome
The spliceosome is the extremely complex macromolecular machine responsible for pre-mRNA splicing. It assembles from five U-rich small nuclear RNAs (snRNAs) and over 200 proteins in a highly dynamic fashion. One important challenge to studying the spliceosome is simply keeping track of all these proteins, a situation further complicated by the variety of names and identifiers that exist in the ...
متن کاملThe spliceosome catalyzes debranching in competition with reverse of the first chemical reaction.
Splicing of nuclear pre-mRNA occurs via two steps of the transesterification reaction, forming a lariat intermediate and product. The reactions are catalyzed by the spliceosome, a large ribonucleoprotein complex composed of five small nuclear RNAs and numerous protein factors. The spliceosome shares a similar catalytic core structure with that of fungal group II introns, which can self-splice u...
متن کاملFunctional coupling of RNAP II transcription to spliceosome assembly.
The pathway of gene expression in higher eukaryotes involves a highly complex network of physical and functional interactions among the different machines involved in each step of the pathway. Here we established an efficient in vitro system to determine how RNA polymerase II (RNAP II) transcription is functionally coupled to pre-mRNA splicing. Strikingly, our data show that nascent pre-messeng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 162 شماره
صفحات -
تاریخ انتشار 2015